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LETTER TO THE EDITOR 

The role of subperiodic and lower-dimensional groups in the 
structure of space groups 

Vojtcch Kopski 
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, POB 24, 18040, 
Praha 8, Czechoslovakia 

Received 17 October 1985 

Abstract. We consider the consequences of Q-reducibility of a point group for the structure 
of a corresponding space group. First we show that the space group is a subgroup of a 
direct product of two Euclidean groups of lower dimensions. We introduce the so-called 
separation diagram from which follows that (i) the space group is a subdirect product of 
space groups of lower dimensions, (ii) its point group is a subdirect product of point 
groups of lower-dimensional groups, (iii) the space group has two complementary normal 
translation subgroups of lower dimensions and the corresponding factor groups are com- 
plementary subperiodic groups. The latter conclusion enables us to classify space groups 
into finer classes than the point classes. The most important fact is that the space groups 
in higher dimensions can be constructed from @irreducible groups of lower dimensions 
unless they are themselves Q-irreducible. 

Among space groups in arbitrary dimensions, we can distinguish those for which the 
action of the point group on the underlying vector space is Q-irreducible. Up to four 
dimensions, these groups include (i)  both types 41 and &i of one-dimensional space 
groups, (ii) the groups of square and hexagonal systems (families) in two dimensions, 
(iii) the cubic groups in three dimensions, (iv) space groups of octagonal, decagonal, 
dodecagonal, di-isohexagonal orthogonal, icosahedral and hypercubic families. The 
best but at the same time a very exacting source for consideration of various reducibilities 
is the book by Curtis and Reiner (1966). We shall just recall here the meaning of 
@reducibility as compared with R-reducibility. The point group action on vector space 
is said to be a Q-representation if a basis exists in which group operators are expressed 
by rational (Q) matrices. This is exactly a condition for the point group being 
crystallographic. The group action is Q-reducible (and decomposable) if the vector 
space splits into invariant subspaces so that the group operators can be expressed by 
rational matrices on each of them. Up to three dimensions, the Q-reducibility coincides 
with R-reducibility. A scheme of reducibilities and decomposabilities is given in the 
book on four-dimensional space groups (Brown et a1 1978), from which we also took 
the information about Q-irreducible families. 

Let 8(n) be the n-dimensional Euclidean group-the group of all rigid motions 
(isometries) of n-dimensional Euclidean space E( n). Then V( n), the real orthogonal 
vector space, associated with E (  n), is a normal subgroup of 8( n) and the factor group 
8(n) /V(n)  is isomorphic to a group O ( n ) ,  the real orthogonal group acting on V(n). 
We denote by U: $ ( n ) + O ( n )  the homomorphism with ker a = V ( n ) .  Elements of 
8(n) are expressed by Seitz symbols {g l t } ,  where g E O ( n ) ,  tEV(n) and the symbol 
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refers to a certain fixed origin, so that {gIO} means the rotation g around this origin. 
Any space group Ce can then be expressed by a symbol Ce = (G, TG, 0, UG(g)), where 
(i)  TG = Ce n V( n) is the full translation subgroup (the lattice) of 3. (ii) G = U(  C e )  c O( n) 
is the point group of 3. The action of O ( n )  on V(n) determines the action of G on 
TG which is G-invariant. (iii) 0 denotes the origin and uG: G+V(n)  the system of 
non-primitive translations. The symbol for Ce then denotes the set of all elements of 
8(n) of the form {glt+u,(g)}, where g runs over G, t runs over TG. In order that 
this set be a group, the system of non-primitive translations must satisfy Frobenius 
congruences: 

where wG(g, h )  is the so-called factor system. According to the definition by Brown 
er a1 (1978), Ce is a space group only if TG is a free Abelian group of rank n, large in 
V(n) ,  which means that it spans V(n) over R (Schwanenberger 1980). 

We assume now that Ce= (G, TG, 0, uG(g)) is a space group for which the action 
of G on V(n) is Q-reducible, so that V(n) splits into a direct sum V(n) = V 1 0 V 2  of 
two G-invariant subspaces V, and V, such that G has a Q-representation on both 
these subspaces. In crystallographic language this means that both subspaces are 
spanned by crystallographic directions. For simplicity we also assume that the rep- 
resentations of G on V, and V2 have no irreducible classes in common, so that V, and 
V2 are mutually orthogonal. The maximal subgroup of O( n) which leaves both V,, V2 
invariant is the direct product 01002 of orthogonal groups on V,, V2. This group is 
the factor group of the direct product of Euclidean groups 8,, g2, which are defined 
as extensions of V,, V2 by O,, 02, respectively. All basic properties of space groups 
with @reducible point groups can be derived from the following theorem. 

Theorem 1. The space group Ce is a subgroup of the direct product S,O 8, only if the 
space V(n)  splits under the action of the point group G into G-invariant, mutually 
orthogonal subspaces VI,  V2. 

Proof: The space V( n) splits into G-invariant mutually orthogonal subspaces V,, V2 
only if G is a subgroup of the direct product 01002. Then each element of G can 
be written uniquely in the form g = g,g2 = g,g,, where g, E O,, g2 E 02, and g,, g2 
commute. Any element {glt + U&)} of the group 94 can then be expressed as a product 
of commuting elements {gl(t l+ ucl(g)} and {g21t2+ uc2(g)}, where t = 1, + t2, U&) = 
uc,(g) + uc2(g) is the unique splitting of t, u c ( g )  into their components t , ,  u,,(g) E V,; 
t,, uc2(g) E V,. These elements commute because g, acts trivially on V,, g2 on V, and 
because g,, g2 themselves commute. Since one of the elements belongs to 8, and the 
other to g2,  the implication is proved in one direction. If Ce is a subgroup of 8,O g2, 
then G is clearly a subgroup of 01002, which proves the implication in the other 
direction. 

The groups V,, V2 are evidently normal subgroups of 8,O g2 and so also is the 
whole V(n).  Further, each of the groups 8,, g2 is itself normal in its direct product, 
the other being the corresponding factor group. We introduce several homomorphisms 
of 8,O g2 defined by their kernels onto corresponding factor groups and present them 
in a commutative diagram for which we suggest the name of 'separation diagram'. 
From this diagram we can easily see the properties of a group 3 E 8,O 8,. 
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Theorem 2. If % c 8, 0 g2, then: 
(i) % is a subdirect product of subgroups pI(%) = ?I1 and p2(?I) = g2 of 82,  

respectively. 
(ii) The point group G is a subdirect product of subgroups u,~,( %) = p,u(  %) = G ,  

and u2p2( %) = p 2 u (  %) = G2 of 01, 02, respectively. 
(iii) The group % has noma1 subgroups TGl= ker ul ( 3)  = VI n 3, TG2 = ker u2( $9) = 

V,n % and the corresponding factor groups are isomorphic to subgroups of 0,O 
g2, 8, 0 02, respectively. 

01 02 

Figure 1. The separation diagram: ker u = V ( n ) ,  ker ul = V I ,  ker u 2 = V 2 ;  ker g l =  g2, 
ker gt = gl ,  ker pI = O,, ker p2 = 0,. 

Both theorems 1 and 2 are valid and the separation diagram can be constructed if 
the point group G is at least R-reducible. In this case, however, the linear envelopes 
of translation groups TGl,TG2 are not necessarily the whole spaces Vl,V2. If the 
reducibility of G is @reducibility, then the linear envelopes of TGI, TG2 over the reals 
are the spaces VI, V2, the groups GI, G2 are crystallographic groups and the translation 
group To is a subdirect sum of groups TOGI, TOG2, the projections of T G  onto VI, V2. 
More precisely, TG is expressible as 

T G = T G ~ @ T G ~ ( O / ~ ~ / ~ ~ + .  . . i d , )  

and 

TOGl = TGI(O+ d2, 4 d3, . . . + d p l )  

Tg2 = TG2( 0 + d2, 4 d32 4 . . . + dp2)  

where dli are the components of dj in Vi, i = 1,2.  The factor groups TG/(TGl@ 
TG2), TgI/TGl and Ti2/TG2 are isomorphic according to the construction of subdirect 
sums or products (Hall 1959, Litvin and Opechowski 1974). 

We observe that the factor groups %/TGl, '3/TG2 can be considered as subperiodic 
groups with translation subgroups TOGz and Tg,, respectively. These are, however, not 
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the ordinary subperiodic groups in n-dimensional space but rather their isomorphs 
which are deprived of the position in the direction of missing translations. The situation 
is analogous to the relation between site point groups and point groups considered as 
factor groups of space groups with respect to the whole translation subgroup. The 
space group can be considered as an extension of the group of missing translations 
TG1 or TGZ by the corresponding subperiodic group. Consequently, the space groups 
can be distributed into classes of these factor groups, which provides finer classification 
than the ordinary geometric or arithmetic classes. 

We have applied part (iii) of theorem 2 to investigation of plane (Litvin and Kopsky 
1986) and space (Fuksa and Kopskf 1986a) groups with Q-reducible point groups. 
The situation is simple but very interesting. In the first case we obtain the frieze groups, 
in the second case we obtain layer and rod groups as factor groups. In analogy with 
Wyckoff positions, we can analyse subperiodic symmetries along missing directions; 
we call this procedure the scanning of subperiodic groups. This analysis has applica- 
tions in the theory of domain walls and twin boundaries. The occurrence of subperiodic 
groups as factor groups is also important in consideration of lattices of subgroups, 
especially of normal subgroups, of space groups and can be used to develop representa- 
tion theory of space groups by ascent from lower to higher dimensions. We consider 
this situation in more detail in our study of lattices of normal subgroups of space 
groups up to three dimensions (Fuksa and Kopski 1986b). 

Consecutive use of theorem 2 gives one an insight into the structure of space groups 
with Q-reducible point groups and can be used for derivation of higher-dimensional 
space or subperiodic groups as well as for introduction of hierarchy of these groups. 
This problem has already been considered by Jarrat (1980) for space group families. 
The point group G can be ultimately reduced to its Q-irreducible components of which 
it is a multiple subdirect product. Corresponding space groups are then multiple 
subdirect products of space groups of lower dimensions. Theorem 2 can be used in 
each step of ‘canonical decomposition’ (see Jarrat 1980). Its modification holds also 
in cases of decomposition within the same representation clasd, when G-invariant 
subspaces VI and V2 transform by the same law as well as in cases of subperiodic groups. 

Reducibility of space groups is evidently worthy of more detailed investigation. 
This will give us a better understanding of space and subperiodic groups which at 
present are known up to four dimensions. On the other hand, it will enable us to 
construct particular reducible groups in such dimensions in which it is hopeless to 
expect lists of all groups. 
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